

電子產(chǎn)品迭代加速的當(dāng)下,PCB(印制電路板)作為核心載體,其可靠性直接決定設(shè)備壽命與運行穩(wěn)定性。然而,PCB 在長期使用中會受溫度、濕度、電應(yīng)力等因素影響,出現(xiàn)性能衰減、焊點脫落、絕緣層老化等問題,若未提前排查,可能導(dǎo)致設(shè)備故障甚至安全事故。
PCB 老化測試的核心價值,在于通過模擬真實使用環(huán)境或強化應(yīng)力條件,提前暴露 PCB 潛在缺陷,篩選出不合格產(chǎn)品,降低后期運維成本。無論是消費電子的手機主板、工業(yè)控制的 PLC 電路板,還是汽車電子的車載 PCB,都需通過標(biāo)準(zhǔn)化老化測試,確保在生命周期內(nèi)穩(wěn)定運行。

PCB 老化的本質(zhì)是 “環(huán)境與應(yīng)力作用下的性能劣化”,其核心誘因包括三類:環(huán)境因素(溫度、濕度、腐蝕性氣體)、電應(yīng)力因素(電壓、電流、頻率)、機械應(yīng)力因素(振動、沖擊)。而老化測試的原理,正是通過模擬或強化這些誘因,加速 PCB 劣化過程,在短時間內(nèi)復(fù)現(xiàn)長期使用中的問題,其核心邏輯可概括為兩點:
1. 應(yīng)力加速劣化:根據(jù) “阿倫尼烏斯方程”,溫度每升高 10℃,化學(xué)反應(yīng)速率約增加 1-2 倍。PCB 中的絕緣材料老化、焊點金屬遷移等過程均屬于化學(xué)反應(yīng),通過提高測試環(huán)境溫度、濕度或電應(yīng)力,可將原本需要數(shù)年的老化過程壓縮至數(shù)天甚至數(shù)小時,快速暴露缺陷。
2. 失效模式匹配:不同應(yīng)用場景的 PCB,其失效模式存在差異。例如,汽車 PCB 需耐受 - 40℃~125℃的溫度循環(huán),而工業(yè) PCB 需長期在高濕度環(huán)境下運行。老化測試會針對性模擬目標(biāo)場景的失效誘因,確保測試結(jié)果與實際使用中的問題高度匹配,避免 “過度測試” 或 “測試不足”。
根據(jù)測試環(huán)境與應(yīng)力類型,PCB 老化測試可分為四大類,不同方法適用于不同場景,需結(jié)合產(chǎn)品需求選擇。
高溫是 PCB 老化的主要誘因之一 —— 高溫會導(dǎo)致 PCB 基材(如 FR-4)的玻璃化轉(zhuǎn)變溫度(Tg)下降,絕緣性能衰減,同時加速焊點氧化與金屬化孔的可靠性劣化。高溫老化測試是最基礎(chǔ)、應(yīng)用最廣泛的方法,具體操作如下:
1. 測試原理:將 PCB 樣品置于高溫箱中,維持恒定高溫(通常為 85℃、105℃或 125℃,根據(jù)產(chǎn)品規(guī)格確定),持續(xù)一定時間(24h、48h、1000h 等),期間監(jiān)測 PCB 的導(dǎo)通性、絕緣電阻、焊點完整性等參數(shù),判斷是否出現(xiàn)失效。
2. 核心設(shè)備:可編程高溫箱(需具備溫度精度 ±1℃、均勻度 ±2℃的控制能力)、萬用表(監(jiān)測導(dǎo)通電阻)、絕緣電阻測試儀(測試絕緣性能)、金相顯微鏡(觀察焊點微觀變化)。
3. 適用場景:適用于筆記本電腦 CPU 主板、汽車發(fā)動機艙 PCB、工業(yè)烤箱內(nèi)控制板等長期處于高溫環(huán)境的產(chǎn)品。
4. 操作要點:
? 樣品需按實際裝機狀態(tài)固定(如焊接元器件、連接導(dǎo)線),避免因固定方式不當(dāng)導(dǎo)致額外應(yīng)力;
? 溫度上升速率需控制在 5℃/min~10℃/min,防止 PCB 因溫差過大出現(xiàn)基材開裂;
? 測試后需在常溫下靜置 1-2h,待樣品恢復(fù)至室溫后再進行參數(shù)檢測,避免溫度影響測試精度。
在高溫基礎(chǔ)上疊加高濕度,會進一步加速 PCB 的老化 —— 水汽會滲透 PCB 基材與絕緣層,導(dǎo)致絕緣電阻下降、金屬化孔電化學(xué)遷移(如銅離子遷移形成導(dǎo)電通路,引發(fā)短路),同時加劇焊點的電化學(xué)腐蝕。該方法主要針對潮濕環(huán)境下的 PCB,如戶外通信設(shè)備、衛(wèi)浴電器 PCB 等。
1. 測試原理:采用 “溫濕度循環(huán)” 或 “恒定溫濕度” 模式,常見條件為 “85℃/85% RH(相對濕度)”“60℃/90% RH”,持續(xù)時間從 100h 到 1000h 不等。測試過程中需實時監(jiān)測 PCB 的絕緣電阻(要求≥10^6Ω)、泄漏電流(要求≤10μA),測試后進行焊點拉力測試與外觀檢查。
2. 核心設(shè)備:恒溫恒濕箱(需支持濕度控制精度 ±3% RH)、高精度絕緣電阻測試儀、泄漏電流檢測儀、焊點拉力計。
3. 關(guān)鍵注意事項:
? 樣品需避免直接接觸箱內(nèi)冷凝水,可通過支架架空或包裹防水膜(僅暴露測試區(qū)域);
? 溫濕度循環(huán)測試中,需控制溫濕度變化速率(如溫度變化≤5℃/min,濕度變化≤10% RH/min),防止 PCB 出現(xiàn)水汽凝結(jié);
? 測試后需立即對樣品進行干燥處理(如 60℃烘干 2h),避免殘留水汽影響后續(xù)檢測結(jié)果。

部分 PCB(如汽車車載 PCB、戶外 LED 顯示屏 PCB)會長期經(jīng)歷 “低溫 - 高溫” 的循環(huán)波動,溫度變化會導(dǎo)致 PCB 基材與元器件的熱膨脹系數(shù)(CTE)不匹配,引發(fā)焊點疲勞、基材分層、導(dǎo)線斷裂等問題。溫度循環(huán)老化測試正是模擬這類場景,驗證 PCB 的抗溫度沖擊能力。
1. 測試原理:通過高低溫箱實現(xiàn) “低溫段 - 常溫段 - 高溫段” 的循環(huán),常見循環(huán)條件為 “-40℃(保持 2h)→常溫(1h)→85℃(保持 2h)→常溫(1h)”,循環(huán)次數(shù)通常為 100 次、500 次。每次循環(huán)后檢測 PCB 的導(dǎo)通性、焊點完整性,循環(huán)結(jié)束后進行金相分析,判斷是否出現(xiàn)焊點裂紋、基材分層。
2. 核心設(shè)備:高低溫循環(huán)箱(需支持 - 60℃~150℃的溫度范圍,溫度轉(zhuǎn)換時間≤5min)、在線導(dǎo)通測試儀(實時監(jiān)測焊點通斷)、掃描電子顯微鏡(SEM,觀察焊點微觀裂紋)。
3. 適用場景:汽車車載娛樂系統(tǒng) PCB、戶外光伏逆變器 PCB、高鐵控制 PCB 等需耐受溫度波動的產(chǎn)品。
4. 操作關(guān)鍵:
? 樣品需按實際安裝方式固定,確保熱傳導(dǎo)路徑與實際一致;
? 循環(huán)過程中需避免樣品與箱壁直接接觸,防止局部溫度偏差;
? 若 PCB 帶有元器件,需提前確認元器件的溫度耐受范圍,避免元器件先于 PCB 失效,導(dǎo)致測試結(jié)果誤判。
PCB 在運行中會承載電壓、電流等電應(yīng)力,長期高電應(yīng)力會導(dǎo)致 PCB 導(dǎo)線發(fā)熱、絕緣層擊穿、金屬化孔電遷移等問題。電應(yīng)力老化測試通過在 PCB 上施加額定或高于額定的電應(yīng)力,結(jié)合溫度環(huán)境,驗證其在電負荷下的長期穩(wěn)定性,也被稱為 “電熱老化測試”。
1. 測試原理:將 PCB 樣品置于恒溫環(huán)境(如 60℃、85℃),同時按實際工作狀態(tài)施加電壓(如 1.2 倍額定電壓)、電流(如 1.1 倍額定電流),持續(xù)通電 100h~1000h。測試過程中監(jiān)測 PCB 的導(dǎo)線溫度(要求≤基材 Tg 溫度 - 20℃)、絕緣電阻、輸出信號穩(wěn)定性,測試后檢查是否出現(xiàn)導(dǎo)線燒蝕、絕緣層破損。
2. 核心設(shè)備:直流電源 / 交流電源(需具備恒壓、恒流輸出功能)、溫度巡檢儀(監(jiān)測導(dǎo)線溫度)、示波器(監(jiān)測信號穩(wěn)定性)、絕緣電阻測試儀。
3. 適用場景:電源 PCB、大功率 LED 驅(qū)動 PCB、服務(wù)器主板等長期高電負荷運行的產(chǎn)品。
4. 安全要點:
? 測試區(qū)域需做好絕緣防護,避免觸電風(fēng)險;
? 需設(shè)置過流、過壓保護裝置,防止 PCB 因突發(fā)故障引發(fā)燒毀;
? 測試過程中需定期檢查樣品狀態(tài),若出現(xiàn)冒煙、異味,需立即停止測試。

規(guī)范的操作流程是確保測試結(jié)果準(zhǔn)確、可重復(fù)的核心,無論是企業(yè)內(nèi)部質(zhì)檢還是第三方檢測,均需遵循 “準(zhǔn)備 - 執(zhí)行 - 分析 - 報告” 四步流程,具體如下:
1. 樣品篩選與預(yù)處理:
? 從同一批次 PCB 中隨機抽取樣品,數(shù)量通常為 5-10 片(根據(jù) ANSI/IPC-TM-650 標(biāo)準(zhǔn),批量生產(chǎn)時抽樣比例≥0.1%);
? 對樣品進行預(yù)處理:清除表面油污、灰塵,檢查外觀(無明顯劃痕、焊點缺陷),按實際使用狀態(tài)焊接元器件(若測試帶元器件的 PCB),并記錄樣品編號、批次、生產(chǎn)日期等信息。
1. 設(shè)備校準(zhǔn)與參數(shù)設(shè)定:
? 校準(zhǔn)測試設(shè)備:高溫箱、恒溫恒濕箱需用標(biāo)準(zhǔn)溫度計校準(zhǔn)溫度(誤差≤±0.5℃),電源設(shè)備需用標(biāo)準(zhǔn)萬用表校準(zhǔn)輸出電壓、電流(誤差≤±1%);
? 根據(jù)產(chǎn)品規(guī)格與測試標(biāo)準(zhǔn)設(shè)定參數(shù):如測試溫度、濕度、時間、電應(yīng)力值,同時設(shè)定監(jiān)測頻率(如每 2h 記錄一次絕緣電阻,每 12h 檢查一次焊點外觀)。
1. 測試方案確認:
? 明確測試目的(如批次質(zhì)檢、失效分析、新方案驗證),確定測試終止條件(如樣品出現(xiàn)導(dǎo)通故障、絕緣電阻低于閾值、測試時間結(jié)束);
? 制定應(yīng)急方案:如設(shè)備故障時的樣品保存方法、突發(fā)安全事件(如樣品冒煙)的處理流程。
1. 樣品放置與初始化監(jiān)測:
? 將樣品按預(yù)設(shè)方式固定在測試設(shè)備內(nèi)(如高溫箱內(nèi)用耐高溫支架固定,避免樣品重疊),連接監(jiān)測設(shè)備(如萬用表表筆、溫度傳感器);
? 進行初始化監(jiān)測:記錄樣品的初始導(dǎo)通電阻(要求≤0.1Ω)、絕緣電阻(要求≥10^8Ω)、焊點拉力(根據(jù) IPC 標(biāo)準(zhǔn),焊點拉力≥5N),確保樣品初始狀態(tài)合格。
1. 環(huán)境與應(yīng)力施加:
? 啟動測試設(shè)備,按設(shè)定參數(shù)施加環(huán)境應(yīng)力(溫度、濕度)與電應(yīng)力,期間禁止隨意調(diào)整參數(shù);
? 按監(jiān)測頻率記錄數(shù)據(jù):如高溫老化測試中,每 2h 用萬用表測導(dǎo)通電阻,每 12h 用絕緣電阻測試儀測絕緣性能;溫度循環(huán)測試中,每次循環(huán)后檢查焊點外觀。
1. 異常處理:
? 若監(jiān)測到數(shù)據(jù)異常(如絕緣電阻驟降、導(dǎo)通電阻超標(biāo)),需暫停測試,記錄異常時間、參數(shù)變化,拍照留存樣品狀態(tài);
? 若設(shè)備出現(xiàn)故障(如溫度失控),需立即取出樣品,置于常溫環(huán)境,待設(shè)備修復(fù)并校準(zhǔn)后,重新抽取同批次樣品進行測試(避免用已受異常應(yīng)力的樣品繼續(xù)測試)。
1. 樣品外觀與參數(shù)檢測:
? 外觀檢查:用放大鏡(10-20 倍)觀察樣品是否有基材分層、焊點裂紋、導(dǎo)線氧化、絕緣層變色等現(xiàn)象,重點檢查金屬化孔、焊點等關(guān)鍵部位;
? 參數(shù)復(fù)測:重新檢測導(dǎo)通電阻、絕緣電阻、焊點拉力,與初始數(shù)據(jù)對比,計算性能衰減幅度(如絕緣電阻衰減率≤20% 為合格);
? 微觀分析:對不合格樣品,用金相顯微鏡或 SEM 觀察焊點微觀結(jié)構(gòu),判斷失效原因(如是否為金屬遷移、疲勞裂紋)。
1. 數(shù)據(jù)整理與失效判定:
? 整理測試數(shù)據(jù),形成 “時間 - 參數(shù)” 曲線(如溫度循環(huán)次數(shù)與焊點拉力的關(guān)系曲線),直觀展示 PCB 性能變化趨勢;
? 按標(biāo)準(zhǔn)判定結(jié)果:如依據(jù) IPC-9701 標(biāo)準(zhǔn),PCB 在 85℃/85% RH、1000h 測試后,絕緣電阻≥10^6Ω、無焊點失效,則判定為合格;若出現(xiàn)任意一項指標(biāo)不達標(biāo),則判定為不合格,并標(biāo)記失效模式(如 “絕緣層擊穿”“焊點疲勞斷裂”)。

測試報告需包含 “基礎(chǔ)信息 - 測試過程 - 數(shù)據(jù)結(jié)果 - 結(jié)論建議” 四部分,確保第三方可追溯、可復(fù)現(xiàn),核心內(nèi)容如下:
? 基礎(chǔ)信息:樣品信息(編號、批次、規(guī)格)、測試標(biāo)準(zhǔn)(如 IPC-TM-650、GB/T 2423)、測試設(shè)備型號與校準(zhǔn)記錄;
? 測試過程:測試方法(如高溫高濕老化)、參數(shù)設(shè)定(溫度 85℃、濕度 85% RH、時間 500h)、監(jiān)測頻率;
? 數(shù)據(jù)結(jié)果:初始數(shù)據(jù)、過程監(jiān)測數(shù)據(jù)、測試后數(shù)據(jù),附 “時間 - 參數(shù)” 曲線與樣品外觀照片;
? 結(jié)論建議:明確樣品是否合格,分析失效原因(如 “焊點裂紋源于溫度循環(huán)中 CTE 不匹配”),提出改進建議(如 “優(yōu)化焊點焊盤設(shè)計,降低熱應(yīng)力”)。
遵循標(biāo)準(zhǔn)化測試是確保結(jié)果權(quán)威性的前提,目前全球主流的 PCB 老化測試標(biāo)準(zhǔn)分為國際標(biāo)準(zhǔn)與國內(nèi)標(biāo)準(zhǔn),企業(yè)需根據(jù)目標(biāo)市場選擇對應(yīng)的標(biāo)準(zhǔn):
1. IPC 標(biāo)準(zhǔn)(美國印制電路協(xié)會):
? IPC-TM-650:PCB 測試方法手冊,其中 “2.6.8 高溫老化測試”“2.6.13 高溫高濕老化測試”“2.6.34 溫度循環(huán)測試” 明確了測試參數(shù)、設(shè)備要求、判定標(biāo)準(zhǔn),是全球 PCB 行業(yè)最常用的標(biāo)準(zhǔn);
? IPC-9701:PCB 可靠性測試標(biāo)準(zhǔn),針對不同應(yīng)用場景(如消費電子、汽車電子)制定了差異化的老化測試條件,如汽車 PCB 需滿足 “-40℃~125℃溫度循環(huán),1000 次循環(huán)無失效”。
1. IEC 標(biāo)準(zhǔn)(國際電工委員會):
? IEC 60068-2-1:環(huán)境測試第 2 部分,規(guī)定了高溫測試的方法,包括 “恒定高溫”“漸變高溫” 兩種模式,適用于 PCB 及電子元器件的老化測試;
? IEC 60068-2-78:規(guī)定了高溫高濕(穩(wěn)態(tài))測試的條件,如 “40℃/93% RH”“55℃/85% RH”,常用于通信設(shè)備 PCB 的可靠性驗證。
1. GB/T 標(biāo)準(zhǔn)(國家標(biāo)準(zhǔn)):
? GB/T 2423.2-2021:電工電子產(chǎn)品環(huán)境試驗第 2 部分,對應(yīng) IEC 60068-2-1,規(guī)定了高溫測試方法,適用于國內(nèi) PCB 企業(yè)的出廠檢測;
? GB/T 2423.3-2016:規(guī)定了恒定濕熱測試方法,條件包括 “40℃/93% RH”“55℃/85% RH”,是國內(nèi)戶外 PCB 產(chǎn)品(如路燈控制板)必須滿足的測試標(biāo)準(zhǔn);
? GB/T 4677-2019:印制板測試方法,其中 “12 老化測試” 明確了 PCB 在高溫、濕熱環(huán)境下的測試流程與判定指標(biāo),與 IPC 標(biāo)準(zhǔn)兼容。
1. 行業(yè)標(biāo)準(zhǔn):
? SJ/T 11277-2018:電子元器件用 PCB 可靠性要求,針對軍工、航空航天領(lǐng)域的 PCB,制定了更嚴(yán)格的老化測試條件,如 “-55℃~150℃溫度循環(huán),2000 次循環(huán)無失效”。

在實際測試中,企業(yè)常面臨 “數(shù)據(jù)偏差”“樣品失效誤判”“測試效率低” 等問題,需針對性解決,確保測試質(zhì)量與效率:
問題表現(xiàn):同一批次樣品在相同測試條件下,絕緣電阻、焊點拉力等數(shù)據(jù)差異較大(偏差超過 10%),導(dǎo)致無法準(zhǔn)確判定批次質(zhì)量。
常見原因:
1. 設(shè)備溫濕度均勻度差:高溫箱內(nèi)局部溫度偏差超過 ±3℃,導(dǎo)致不同位置的樣品受應(yīng)力不一致;
2. 樣品預(yù)處理不統(tǒng)一:部分樣品表面殘留油污,影響絕緣電阻測試結(jié)果;
3. 監(jiān)測設(shè)備接觸不良:萬用表表筆與 PCB 測試點接觸電阻過大,導(dǎo)致導(dǎo)通電阻測量值偏高。
解決辦法:
4. 設(shè)備校準(zhǔn):定期用多點溫度記錄儀檢測高溫箱 / 恒溫恒濕箱內(nèi)的溫濕度分布,對均勻度超標(biāo)的設(shè)備進行維修(如更換加熱管、風(fēng)扇);
5. 統(tǒng)一預(yù)處理:所有樣品采用相同的清洗流程(如用異丙醇擦拭表面,60℃烘干 30min),確保初始狀態(tài)一致;
6. 優(yōu)化監(jiān)測方式:采用探針式測試夾具固定表筆,避免手動接觸帶來的誤差,同時在測試前用標(biāo)準(zhǔn)電阻校準(zhǔn)萬用表(誤差≤±0.5%)。
問題表現(xiàn):
? 假失效:測試中監(jiān)測到參數(shù)異常(如絕緣電阻下降),但后續(xù)復(fù)檢時參數(shù)恢復(fù)正常,誤判樣品不合格;
? 漏失效:測試中未發(fā)現(xiàn)明顯問題,但樣品實際使用中出現(xiàn)失效,導(dǎo)致測試結(jié)果失真。
常見原因:
1. 假失效:測試中樣品表面凝結(jié)冷凝水,導(dǎo)致絕緣電阻臨時下降;監(jiān)測設(shè)備故障(如電源波動)導(dǎo)致數(shù)據(jù)異常;
2. 漏失效:監(jiān)測頻率過低(如每 24h 記錄一次數(shù)據(jù)),錯過短期參數(shù)波動;未檢測關(guān)鍵部位(如金屬化孔),導(dǎo)致潛在缺陷未暴露。
解決辦法:
3. 避免假失效:高溫高濕測試中控制溫濕度變化速率,防止冷凝水產(chǎn)生;測試中同步監(jiān)測設(shè)備參數(shù)(如電源電壓、箱內(nèi)溫度),若設(shè)備參數(shù)異常,對應(yīng)時間段的數(shù)據(jù)視為無效;
4. 防止漏失效:根據(jù)失效模式調(diào)整監(jiān)測頻率(如電應(yīng)力老化測試每 1h 記錄一次導(dǎo)線溫度);增加關(guān)鍵部位的檢測項目(如金屬化孔的導(dǎo)通電阻測試,要求≤0.05Ω)。
問題表現(xiàn):傳統(tǒng)老化測試(如 1000h 高溫高濕測試)耗時過長,導(dǎo)致產(chǎn)品研發(fā)周期延長或批量生產(chǎn)時質(zhì)檢滯后。
常見原因:
1. 測試條件過于保守:沿用通用標(biāo)準(zhǔn)(如 85℃/85% RH),未根據(jù)產(chǎn)品實際使用場景優(yōu)化參數(shù);
2. 設(shè)備利用率低:單臺高溫箱一次僅能測試少量樣品,且需人工記錄數(shù)據(jù),效率低下。
解決辦法:
3. 優(yōu)化測試條件:基于 “加速因子” 計算,在確保失效模式一致的前提下,提高應(yīng)力強度(如將溫度從 85℃提升至 105℃),縮短測試時間(如將 1000h 縮短至 500h),但需通過對比試驗驗證加速方案的有效性;
4. 升級設(shè)備與流程:采用多工位測試設(shè)備(如一次可測試 50 片樣品的恒溫恒濕箱),搭配自動化數(shù)據(jù)采集系統(tǒng)(如 PLC + 觸摸屏,實時記錄數(shù)據(jù)并生成曲線),減少人工干預(yù),提升效率。

不同行業(yè)的 PCB 因使用環(huán)境差異,對老化測試的需求不同,以下為典型行業(yè)的應(yīng)用案例,為企業(yè)提供參考:
應(yīng)用場景:智能手機主板、筆記本電腦 CPU 供電 PCB,需耐受常溫至 60℃的工作溫度,且需長期穩(wěn)定運行(≥3 年)。
測試方案:采用 “高溫老化測試 + 電應(yīng)力老化測試” 組合,具體參數(shù):
? 高溫老化:85℃,100h,監(jiān)測導(dǎo)通電阻、絕緣電阻;
? 電應(yīng)力老化:60℃環(huán)境下,施加 1.1 倍額定電壓、1.1 倍額定電流,持續(xù)通電 200h,監(jiān)測輸出信號穩(wěn)定性。
案例:某手機廠商在研發(fā)新款 5G 手機主板時,通過上述測試發(fā)現(xiàn)部分 PCB 的電源線路在電應(yīng)力老化 150h 后,導(dǎo)通電阻從 0.08Ω 升至 0.2Ω,進一步分析發(fā)現(xiàn)是導(dǎo)線鍍層厚度不足(僅 1μm,標(biāo)準(zhǔn)要求≥2μm)。優(yōu)化鍍層工藝后,復(fù)測樣品全部通過 200h 測試,后續(xù)量產(chǎn)產(chǎn)品的故障率下降 80%。

應(yīng)用場景:汽車發(fā)動機艙 PCB(工作溫度 - 40℃~125℃)、車載中控 PCB(溫度循環(huán) - 30℃~85℃),需滿足≥10 年 / 20 萬公里的使用壽命。
測試方案:以溫度循環(huán)老化測試為核心,搭配高溫老化測試,參數(shù)如下:
? 溫度循環(huán):-40℃(2h)→常溫(1h)→125℃(2h)→常溫(1h),循環(huán) 500 次,每次循環(huán)后檢測焊點拉力與導(dǎo)通性;
? 高溫老化:125℃,500h,測試后檢查基材是否分層。
案例:某汽車電子企業(yè)為新能源汽車電機控制 PCB 制定測試方案,初始采用 100 次溫度循環(huán)測試,未發(fā)現(xiàn)明顯問題。但實際路測中部分 PCB 出現(xiàn)焊點裂紋,后將循環(huán)次數(shù)提升至 500 次,成功暴露焊點疲勞缺陷。通過優(yōu)化焊點形狀(增加焊盤面積),解決了該問題,路測故障率從 5% 降至 0.1%。
應(yīng)用場景:工業(yè) PLC(可編程邏輯控制器)PCB、紡織機械控制 PCB,長期處于高濕度(60% RH~90% RH)、多粉塵環(huán)境,需防止絕緣層受潮與導(dǎo)線腐蝕。
測試方案:采用高溫高濕老化測試,結(jié)合粉塵模擬,參數(shù)如下:
? 高溫高濕:60℃/90% RH,1000h,期間每 24h 測試絕緣電阻(要求≥10^6Ω);
? 粉塵模擬:測試后在樣品表面噴灑工業(yè)粉塵(如棉絮粉塵),再進行 100h 高溫高濕測試,驗證粉塵對絕緣性能的影響。
案例:某工業(yè)設(shè)備廠商為紡織機械 PCB 測試時,發(fā)現(xiàn)粉塵覆蓋后,PCB 的絕緣電阻從 10^8Ω 降至 10^5Ω,不符合要求。通過在 PCB 表面涂覆防水防塵涂層(如有機硅涂層),復(fù)測后絕緣電阻穩(wěn)定在 10^7Ω 以上,滿足工業(yè)使用需求。

1. 智能化測試:引入 AI 與物聯(lián)網(wǎng)技術(shù),實現(xiàn) “全自動測試 + 智能分析”。例如,通過傳感器實時采集 PCB 的溫度、電壓、電流等數(shù)據(jù),AI 算法自動識別異常數(shù)據(jù)(如參數(shù)突變),并預(yù)判失效時間;測試設(shè)備可通過物聯(lián)網(wǎng)遠程監(jiān)控,實現(xiàn)多設(shè)備協(xié)同工作,提升測試效率。
2. 精細化測試:針對高密度 PCB(如 Mini LED 背光 PCB、芯片載板),傳統(tǒng)的宏觀測試難以暴露微觀缺陷(如微米級焊點裂紋、金屬化孔電遷移),未來將結(jié)合微觀檢測技術(shù),如 “老化測試 + X 射線檢測”“老化測試 + 原子力顯微鏡(AFM)”,實現(xiàn)從宏觀性能到微觀結(jié)構(gòu)的全方位驗證。
3. 綠色化測試:響應(yīng) “雙碳” 政策,減少測試過程中的能耗與環(huán)境污染。例如,開發(fā)低能耗測試設(shè)備(如采用熱泵技術(shù)的高溫箱,能耗降低 30%);推廣 “共享測試” 模式,多家企業(yè)共用第三方測試平臺,減少設(shè)備重復(fù)購置;測試后樣品分類回收(如金屬導(dǎo)線、基材分離回收),降低廢棄物排放。
PCB 老化測試是保障電子產(chǎn)品可靠性的關(guān)鍵環(huán)節(jié),其核心在于通過模擬或強化環(huán)境與應(yīng)力,提前暴露 PCB 潛在缺陷。本文從原理、方法、流程、標(biāo)準(zhǔn)、案例等維度,全面解析了 PCB 老化測試技術(shù),核心要點可概括為:
1. 方法選擇需匹配應(yīng)用場景:高溫測試適用于高溫環(huán)境,溫度循環(huán)測試適用于溫度波動場景,電應(yīng)力測試適用于高功率 PCB;
2. 流程需標(biāo)準(zhǔn)化:嚴(yán)格遵循 “準(zhǔn)備 - 執(zhí)行 - 分析 - 報告” 流程,確保測試結(jié)果準(zhǔn)確可追溯;
3. 問題需針對性解決:通過設(shè)備校準(zhǔn)、優(yōu)化監(jiān)測方式,避免數(shù)據(jù)偏差與誤判,平衡測試精度與效率。
未來,隨著智能化、精細化技術(shù)的發(fā)展,PCB 老化測試將更高效、更精準(zhǔn),為電子行業(yè)的高質(zhì)量發(fā)展提供支撐。